Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 11(1): 273-289, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28295019

RESUMO

Matrix protein 2 ectodomain (M2e) is considered an attractive component of a broadly protective, universal influenza A vaccine. Here we challenge the canonical view that antibodies against M2e are the prime effectors of protection. Intranasal immunizations of Balb/c mice with CTA1-3M2e-DD-generated M2e-specific memory CD4 T cells that were I-Ad restricted and critically protected against infection, even in the complete absence of antibodies, as observed in JhD mice. Whereas some M2e-tetramer-specific memory CD4 T cells resided in spleen and lymph nodes, the majority were lung-resident Th17 cells, that rapidly expanded upon a viral challenge infection. Indeed, immunized IL-17A-/- mice were significantly less well protected compared with wild-type mice despite exhibiting comparable antibody levels. Similarly, poor protection was also observed in congenic Balb/B (H-2b) mice, which failed to develop M2e-specific CD4 T cells, but exhibited comparable antibody levels. Lung-resident CD69+ CD103low M2e-specific memory CD4 T cells were αß TCR+ and 50% were Th17 cells that were associated with an early influx of neutrophils after virus challenge. Adoptively transferred M2e memory CD4 T cells were strong helper T cells, which accelerated M2e- but more importantly also hemagglutinin-specific IgG production. Thus, for the first time we demonstrate that M2e-specific memory CD4 T cells are broadly protective.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos de Histocompatibilidade Classe II/metabolismo , Hibridomas , Memória Imunológica , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Ligação Proteica , Domínios Proteicos/genética , Vacinação , Proteínas da Matriz Viral/genética
2.
J Mol Endocrinol ; 49(3): 267-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23018678

RESUMO

3-M syndrome is a primordial growth disorder caused by mutations in CUL7, OBSL1 or CCDC8. 3-M patients typically have a modest response to GH treatment, but the mechanism is unknown. Our aim was to screen 13 clinically identified 3-M families for mutations, define the status of the GH-IGF axis in 3-M children and using fibroblast cell lines assess signalling responses to GH or IGF1. Eleven CUL7, three OBSL1 and one CCDC8 mutations in nine, three and one families respectively were identified, those with CUL7 mutations being significantly shorter than those with OBSL1 or CCDC8 mutations. The majority of 3-M patients tested had normal peak serum GH and normal/low IGF1. While the generation of IGF binding proteins by 3-M cells was dysregulated, activation of STAT5b and MAPK in response to GH was normal in CUL7(-/-) cells but reduced in OBSL1(-/-) and CCDC8(-/-) cells compared with controls. Activation of AKT to IGF1 was reduced in CUL7(-/-) and OBSL1(-/-) cells at 5 min post-stimulation but normal in CCDC8(-/-) cells. The prevalence of 3-M mutations was 69% CUL7, 23% OBSL1 and 8% CCDC8. The GH-IGF axis evaluation could reflect a degree of GH resistance and/or IGF1 resistance. This is consistent with the signalling data in which the CUL7(-/-) cells showed impaired IGF1 signalling, CCDC8(-/-) cells showed impaired GH signalling and the OBSL1(-/-) cells showed impairment in both pathways. Dysregulation of the GH-IGF-IGF binding protein axis is a feature of 3-M syndrome.


Assuntos
Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas do Citoesqueleto/genética , Nanismo/genética , Nanismo/metabolismo , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Criança , Pré-Escolar , Nanismo/sangue , Nanismo/patologia , Feminino , Hormônio do Crescimento/sangue , Humanos , Lactente , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Hipotonia Muscular/sangue , Hipotonia Muscular/patologia , Mutação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Coluna Vertebral/anormalidades , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...